Oxidative burst and the activity of defense-related enzymes in compatible and incompatible tomato-Alternaria solani interactions
Balbi-Peña, Maria IsabelSchwan-Estrada, Kátia Regina FreitasStangarlin, José Renato
The production of reactive oxygen species (ROS), hypersensitive response (HR), and the activity of the enzymes guaiacol peroxidase, catalase, polyphenol oxidase, B-1,3-glucanase and chitinase, were studied in leaves of resistant [CNPH 1287 (Solanum habrochaites syn. Lycopersicon hirsutum)] and susceptible [Santa Cruz Kada (S. lycopersicum syn. L. esculentum)] tomato genotypes inoculated with Alternaria solani. Leaves were collected at the time of inoculation and at 4, 8, 12, 24, 48, 72, 96 and 120 hours post inoculation. Conidia germination occurred equally onto the leaf surface in both genotypes and germination tubes grew without apparent orientation. Lesion frequency was lower in CNPH 1287, and it was the consequence of a lower number of appressoria formed in that genotype. ROS were observed in low frequency in both genotypes. HR was observed in penetrated epidermal host cells also in both genotypes. It seems that ROS and HR would not contribute to the resistance of S. habrochaites to A. solani in this study. The activity of guaiacol peroxidase, polyphenol oxidase, B-1,3-glucanase and chitinase was significantly increased in the resistant genotype. These results suggest that defense-related enzymes but no oxidative burst play a role in the defense response of S. habrochaites to A. solani.(AU)
Texto completo