VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

p. 371-377

URS Campestre seedless orange: a new mutant with female sterility

Bender, Renar JoãoSantos, Rinaldo Pires dosGuerra, DivanildeSchwarz, Sergio FranciscoBender, Stefan da Silveira

ABSTRACT: Seedlessness in fruit is a trait that is much sought after by juice making industries. Close to the city of São Sebastião do Caí, in the state of Rio Grande do Sul (RS), Brazil, a new mutant orange originating from natural mutation was identified and selected as a seedless material. To determine the mechanisms involved in the absence of seeds, the reproductive structures of this new mutant by comparison with a Valencia sweet orange as control, a cultivar with a profusion of seeds, was analyzed in terms of meiotic behavior, meiotic index, pollen viability, in vitro germination, and ovule features to determine the grounds for seed absence. Other morphological analyzes allowed for visualizing the structures of normal appearance and size in both cultivars. Meiotic analysis identified chromosome normal pairing with a predominance of bivalents at diakinesis and metaphase 1. URS Campestre flowers at different developmental stages had anthers and ovaries whose dimensions are typical while pollen grain analysis pointed to a standard developmental pattern, normal meiosis, high viability (84 %) and elevated in vitro pollen tube germination rates (63 %). The cv. Valencia and URS Campestre ovules had a similar shape and morphology, sharing an anatropous orientation, and two integuments. In the internal ovule analyses of Valencia sweet oranges, normal embryo sac cells were identified: presence of one egg cell and two synergids, three antipodes and a bigger and central cell containing two polar nuclei. However, the analysis of ovules from URS Campestre reveals an apparent senescence or non-formation of an embryo sac, where only a few highly stained and collapsed cells could be identified. These results led to the conclusion that female sterility in URS Campestre, with a total absence of a female gametophyte, is the limiting factor for fertilization and seed production.(AU)

Texto completo