Comparation of logistic regression methods and discrete choice model in the selection of habitats
Vergara Cardozo, SandraFrederick John Manly, BryanTadeu dos Santos Dias, Carlos
Baseado em revisão mais recente de análises de dados em seleção de recurso pelos animais e com as mais recentes sugestões, que indicam a falta de uma teoria estatística unificada que mostre como a seleção do recurso pode ser detectada e medida, os autores sugerem que o conceito da função da seleção do recurso (RSF) pode ser a base do desenvolvimento da teoria. A revisão de modelos de escolha discreta (DCM) é sugerida como uma aproximação para estimar a RSF quando a escolha do animal os grupos de animais envolvem diferentes conjuntos de unidades de recurso disponíveis. A definição do RSF requer que o recurso que esteja sendo estudado consista em unidades discretas. O método estatístico frequentemente usado para estimar a RSF é a regressão logística mas DCM também pode ser usado. A teoria de DCM tem sido bem desenvolvida para análises de conjunto de dados que envolvem escolhas de produtos pelos humanos, mas também pode ser aplicável a escolhas de habitat pelos animais com algumas modificações. A comparação da regressão logística com o DCM para uma escolha é feita porque as estimativas do coeficiente do modelo de regressão logística inclui o intercepto, mas no DCM o coeficiente do intercepto não está presente. O objetivo deste trabalho foi comparar as estimativas da função da seleção do recurso obtida pela aplicação da regressão logística e o DCM do conjunto de dados de um estudo de seleção de habitat da coruja manchada (Strix occidentalis) no noroeste dos Estados Unidos.
Texto completo