Redes neurais artificiais na estimação de variáveis biométricas de mudas de espécies florestais produzidas em diferentes substratos
Fernandes, Milton MarquesSousa, Francisco LuisSilva, Jeferson Pereira MartinsAraújo, Emanuel FrançaFernandes, Márcia Rodrigues de MouraNóbrega, Rafaela Simão Abrahão
O objetivo do trabalho foi avaliar o crescimento em diâmetro do coleto e altura, e a produção de matéria seca total de mudas de Myracrodruon urundeuva, Jacaranda brasiliana e Mimosa caesalpiniaefolia. Concomitantemente, desenvolveu-se uma Rede Neural Artificial (RNA) do tipo Multilayer Perceptron que seria capaz de estimar a H e a MST das mudas das espécies estudadas. As mudas foram cultivadas em ambiente protegido com 50% de sombra. Assim, os tratamentos foram considerados com cinco proporções do material orgânico (0, 20, 40, 60 e 80% v/v) na composição do substrato final (solo da área desertificada). Aos 120 dias após a semeadura, as mudas foram coletadas para determinação das variáveis biométricas. A rede MLP foi utilizada empregando-se o algoritmo de treinamento Levenberg-Marquardat. As variáveis utilizadas como entrada da MLP para a estimação da altura e massa seca das mudas foram: diâmetro do coleto, diâmetro mínimo, médio e máximo do coleto, as espécies e fontes de resíduos orgânicos (esterco bovino, esterco caprino e palha de arroz), totalizando dez entradas. Foi utilizada a função de ativação tangente hiperbólica. Como resultados, recomenda-se a proporção 80:20% (esterco bovino e/ou esterco caprino:solo da área degradada) ao substrato de cultivo para o crescimento das mudas das espécies. A adição de doses de esterco bovino e esterco caprino influenciaram o DC do...(AU)
Texto completo