Thermogenesis in stingless bees: an approach with emphasis on brood's thermal contribution
Dantas, Maiko Roberto Tavares
The animals behave as a thermodynamic system complex, which remains all the time exchanging energy with the environment. In this context, the body temperature of bees considerably accompanies variations in ambient temperature, and the performance of most of its activity is largely affected by air temperature. When these individuals are exposed to temperatures above or below the optimum range for the species during its pupal stage, these, when they survive, have morphological deficiencies, physiological or behavioral as adults. These insects use physiological activities such as internal temperature control mechanisms of the nest. Social insects like honey bees demonstrate certain thermoregulatory ability to nest in which they live, known as the colonial endotherm. This strategy has an interesting feature, which the animals are endothermic when performing motor and ectothermic during inactivity. The meliponines (stingless bees) are highly social bees, working together to maintain the colony, keeping almost constant the temperature throughout the year. The mechanisms of thermoregulation these animals are called passive thermoregulation, it is due solely to the construction of involucre and nesting (honeycomb structures) and not the motor activities of individuals. Therefore, in most species of stingless bees, with rare exceptions, are the only mechanisms that they have to termorregularem. Maintaining a constant temperature is critical for normal growth and development of the larval and pupal stages. It is known that the brood combs also contribute to colonial thermoregulation through its thermogenesis, and larvae and pupae more mature have higher heat input to the brood comb along its development.(AU)
Texto completo