Rede neural de gráfico temporal espectral para previsão de preços agrícolas multivariados
Özden, CevherBulut, Mutlu
A previsão multivariada de séries temporais tem um papel importante em muitos domínios do mundo real. Especialmente, a previsão de preços sempre esteve no foco dos pesquisadores. No entanto, é uma tarefa desafiadora que requer a captura de correlações intra-séries e inter-séries. A maioria dos modelos na literatura foca apenas a correlação no domínio temporal. Neste artigo, selecionamos um novo conjunto de dados do site oficial do Ministério do Comércio Turco. O conjunto de dados consiste em preços diários e volume comercial de vegetais e abrange 1.791 dias entre 1º de janeiro de 2018 e 26 de novembro de 2022. Uma Rede Neural de Gráfico Temporal Espectral é empregada no conjunto de dados curado e os resultados são fornecidos em comparação com CNN, LSTM e Modelos de Floresta Aleatória. A arquitetura GNN alcançou um resultado de ponta (MAE: 1,37, RMSE: 1,94). Até onde sabemos, este é um dos poucos estudos que investiga GNN para análise de séries temporais e o primeiro estudo na área de arquitetura.
Texto completo