VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

Desenvolvimento de um sistema de previsão híbrido para preços de commodities agrícolas: estudo de caso para arroz tailandês

Menhaj, Mohammad HosseinKavoosi-Kalashami, Mohammad

Prever o preço dos produtos agrícolas é uma ação benéfica para agricultores, agentes de marketing, consumidores e legisladores. Hoje, o gerenciamento da segurança desse produto requer modelos de previsão de preços eficientes e confiáveis para a importação e exportação de um país. Nas últimas décadas, o modelo Autoregressive Integrated Moving Average (ARIMA) tem sido amplamente utilizado na previsão de séries temporais da economia. Recentemente, muitas das observações de séries temporais apresentadas em economia têm se mostrado claramente não lineares. A modelagem de aprendizado de máquina (ML), por outro lado, oferece uma técnica de previsão de preços potencial que é mais flexível, apresentados os dados limitados disponíveis na maioria dos países. Nesta pesquisa, um modelo híbrido de previsão de preços foi usado, por meio de uma nova técnica de agrupamento, um novo algoritmo de seleção de agrupamento e uma rede neural perceptron multicamadas (MLPNN), que teve muitas vantagens, e usando séries temporais mensais de preços FOB do arroz tailandês de novembro 1987 a outubro de 2017. Os resultados empíricos deste estudo mostraram que o valor da raiz do erro quadrático médio (RMSE) é igual a 14,37 e o erro percentual absoluto médio (MAPE) é igual a 4,09% para o modelo híbrido. Os resultados da avaliação do método proposto e a comparação de seu desempenho com quatro modelos de benchmark, por séries temporais mensais de preço FOB do arroz tailandês de novembro de 1987 a outubro de 2017, mostram o desempenho superior do método proposto.

Texto completo