VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

Genome prediction accuracy of common bean via Bayesian models

Barili, Leiri DaianeVale, Naine Martins doSilva, Fabyano Fonseca eCarneiro, José Eustáquio de SouzaOliveira, Hinayah Rojas deVianello, Rosana PereiraValdisser, Paula Arielle Mendes RibeiroNascimento, Moyses

RESUMO: Objetivou-se incorporar informações genômicas de marcadores SNP (single nucleotide polymorphism) na avaliação genética das características stay-green (SG), arquitetura de planta (AP), aspecto de grãos (AG) e produtividade de grãos (PG) em feijoeiro-comum via modelos Bayesianos. Estes modelos foram comparados quanto a acurácia de predição e habilidade de estimação da herdabilidade para cada característica. Utilizaram-se informações de 80 cultivares genotipadas para 377 marcadores SNP, cujos efeitos de substituição alélica foram estimados por meio de cinco diferentes modelos Bayesianos: Bayes A (BA), B (BB), C (BC), LASSO (BL) e regressão ridge (BRR). Embora as acurácias de predição calculadas por meio de análise de validação cruzada tenham sido similares dentro de cada característica, o modelo BB se destacou para a característica SG, enquanto o modelo BRR foi indicado para as demais. As herdabilidades estimadas para SG, AP, AG e PG foram, respectivamente, 0,61, 0,28, 0,32 e 0,29. Em resumo, os métodos contemplados mostraram-se efetivos e de fácil implementação. O conjunto de marcadores utilizado pode auxiliar na seleção precoce de genótipos promissores, uma vez que a incorporação de informações genômicas aumenta a acurácia de predição do mérito genético estimado.

Texto completo