Análise de agrupamento na seleção de modelos de regressão não-lineares para curvas de crescimento de ovinos cruzados
Gomes da Silveira, FernandaFonseca e Silva, FabyanoLuiz Souza Carneiro, PauloHenrique Mendes Malhado, CarlosAugusto Muniz, Joel
Este estudo teve como objetivo utilizar a análise de agrupamento para classificar modelos de regressão não-lineares usados para descrever a curva de crescimento de ovinos cruzados, tendo em vista os resultados de diferentes avaliadores de qualidade de ajuste. Para tanto, utilizaram-se dados de peso-idade dos seguintes cruzamentos entre raças de ovinos de corte: Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. Após a indicação do melhor modelo, objetivou-se ainda aplicar a técnica de identidade de modelos a fim de identificar o cruzamento mais produtivo. Foram ajustados doze modelos não-lineares, cuja qualidade de ajuste foi medida pelo coeficiente de determinação ajustado, critérios de informação de Akaike e Bayesiano, erro quadrático médio de predição e coeficiente de determinação de predição. A análise de agrupamento indicou o modelo Richards como o mais adequado para descrever as curvas de crescimento dos três grupos genéticos considerados, e os testes de identidade de modelos indicaram o cruzamento Dorper x Santa Inês como sendo o mais indicado para a pecuária local.
Texto completo