Conseqüências da multicolinearidade sobre a análise de trilha em canola
Luís Meirelles Coimbra, JeffersonBenin, GiovaniAlano Vieira, EduardoCosta de Oliveira, AntônioIrajá Félix Carvalho, FernandoFrederico Guidolin, AltamirPires Soares, Adriana
A análise estatística do tipo multivariada vem crescendo consideravelmente, motivando a sua ampla utilização por parte dos pesquisadores criando, assim, grande demanda por conhecimentos específicos tanto a respeito da sua aplicação quanto das suas pressuposições ou limitações. Para que a avaliação do grau de associação entre diferentes caracteres de importância agronômica tenha uma estimativa confiável em termos biológico, é de fundamental importância identificar e quantificar o grau de multicolinearidade entre as variáveis estudadas. Além disso, os tipos de modelos estatísticos e matemáticos utilizados na determinação desta dependência linear entre as variáveis classificatórias ou independentes podem ou não ser adequados a estimativas dos parâmetros biológicos avaliados. O presente trabalho tem como objetivo apresentar uma avaliação crítica sobre o grau de multicolinearidade identificado e avaliado sobre a análise de trilha analisada sobre partes de um experimento de canola. Os resultados permitem inferir que a aplicação da análise de trilha sobre o grau de multicolinearidade severa produz resultados sem nenhuma importância biológica para o melhorista de plantas. No entanto, esta limitação pode ser facilmente identificada e corrigida através da análise de trilha com colinearidade empregando uma constante (k) na diagonal da matriz XX. O modelo de análise com multicolinearidade severa, entretanto, superestimou, valores de coeficientes de correlação simples, comparativamente com a multicolinearidade fraca. Mesmo assim, pode não ser necessariamente mais precisa, principalmente em virtude da avaliação de um número restrito de variáveis incluídas na análise ou de uma sobreposição destas variáveis explicativas.
Texto completo