Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis
Khezri, MaryamJouzani, Gholamreza SalehiAhmadzadeh, Masoud
It is known that there is correlation between biofilm formation and antagonistic activities of Bacillus subtilis strains; but, the mechanism of this correlation is not clear. So, the effect of the plant pathogen (Fusarium culmorum) on the biofilm formation in a B. subtilis strain with high antagonistic and biofilm formation activities was studied. The expression of sinR and tasA genes involved in the biofilm formation was studied in both single culture of bacterium (B) and co-culture with F. culmorum (FB) using real-time PCR. The results revealed that the expression of the sinR gene in both B and FB conditions was continuously decreased during the biofilm formation period and, after 24 h (B4 and FB4), it reached 1% and 0.3% at the planktonic phase (B1), respectively, whereas the expression of the tasA was continuously increased and was 5.27 and 30 times more than that at the planktonic phase (B1) after 24 h, respectively. So, the expression reduction rate for sinR (3 times) and the expression increasing rate for tasA (6 times) were significantly higher in FB conditions than the B ones. The relative expression of sinR in FB1 (planktonic phase), FB2 (8 h), FB3(12 h), and FB4 (24 h) times was 0.65, 0.44, 0.35, and 0.29, whereas the tasA gene expression was 2.98, 3.44, 4.37, and 5.63-fold of the one at coordinate time points in B conditions, respectively. The significant expression reduction of sinR and increase of tasA confirmed that the presence of pathogen could stimulate biofilm formation in the antagonistic bacterium. (AU)
Texto completo