VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

Previsão de produção florestal em diferentes cenários de mudanças climáticas usando modelos inteligentes de dados no Paquistão

Yousafzai, AManzoor, WRaza, GMahmood, TRehman, FHadi, RShah, SAmin, MAkhtar, ABashir, SHabiba, UHussain, M

Resumo Este estudo teve como objetivo desenvolver e avaliar modelos baseados em dados para previsão da produção florestal em diferentes cenários de mudanças climáticas na divisão florestal Gallies do distrito de Abbottabad, Paquistão. Os modelos Random Forest (RF) e Kernel Ridge Regression (KRR) foram desenvolvidos e avaliados usando dados de produção de duas espécies (pinheiro-azul e abeto-prateado) como uma variável objetiva e dados climáticos (temperatura, umidade, precipitação e velocidade do vento) como preditivos variáveis. A precisão da previsão de ambos os modelos foi avaliada por meio de erro quadrático médio (RMSE), erro absoluto médio (MAE), coeficiente de correlação (r), erro quadrático médio relativo (RRMSE), Legates-McCabe's (LM), índice de Willmott (WI) e métricas Nash-Sutcliffe (NSE). No geral, o modelo RF superou o modelo KRR devido à sua maior precisão na previsão do rendimento florestal. O estudo recomenda fortemente que o modelo RF seja aplicado em outras regiões do país para previsão do crescimento e produtividade florestal, o que pode ajudar no manejo e planejamento futuro da produtividade florestal no Paquistão.

Texto completo