VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

Prediction of visceral leishmaniasis incidence using the Seasonal Autoregressive Integrated Moving Average model (SARIMA) in the state of Maranhão, Brazil

Pimentel, K. B. A.Oliveira, R. S.Aragão, C. F.Aquino Júnior, J.Moura, M. E. S.Guimarães-e-Silva, A. S.Pinheiro, V. C. S.Gonçalves, E. G. R.Silva, A. R.

Resumo A leishmaniose visceral (LV) é uma doença de natureza infecciosa, predominante em países de zonas tropicais. A predição de ocorrência de doenças infecciosas através da modelagem epidemiológica tem se revelado uma importante ferramenta no entendimento de sua dinâmica de ocorrência. O objetivo deste estudo foi desenvolver um modelo de previsão da incidência da LV no Maranhão usando o modelo de Média Móvel Integrada Autocorrelacionada Sazonal (SARIMA). Foram coletados os dados mensais de casos de LV através do Sistema de Informação de Agravos de Notificação (SINAN) correspondentes ao período de 2001 a 2018. O método de Box-Jenkins foi aplicado para ajustar um modelo de predição SARIMA para incidência geral e por sexo (masculino e feminino) de LV para o período de janeiro de 2019 a dezembro de 2023. Durante o período de 216 meses dessa série temporal, foram registrados 10.431 casos de LV no Maranhão, com uma média de 579 casos por ano. Em relação à faixa etária, houve maior registro no público pediátrico (0 a 14 anos). Houve predominância do sexo masculino, com 6437 casos (61,71%). Os valores do teste de Box-Pierce para incidência geral, sexo masculino e feminino reforçados pelos resultados do teste Ljung-Box sugerem que as autocorrelações de resíduos apresentam um comportamento de ruído branco. Para incidência mensal geral e por sexo masculino e feminino, os modelos SARIMA (2,0,0) (2,0,0), (0,1,1) (0,1,1) e (0,1,1) (2, 0, 0) foram os que mais se ajustaram aos dados, respectivamente. O modelo SARIMA se mostrou uma ferramenta adequada de previsão e análise da tendência de incidência da LV no Maranhão. A determinação da variação temporal e sua predição são determinantes no norteamento de medidas de intervenção em saúde.

Texto completo