VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

p. 93-104

Germline modification of domestic animals

Tang, LGonzález, RDobrinski, I

Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation.(AU)

Texto completo