Subdiaphragmatic venous stasis and tissular hypoperfusion as sources of metabolic acidosis during passive portal-jugular and caval-jugular bypasses in dogs
Coelho, Antônio Roberto de BarrosFerraz, Álvaro Antônio BandeiraCâmara Neto, Renato DornelasSouza, Ayrton Ponce deFerraz, Edmundo Machado
Subdiafragmatic venous decompression during anhepatic stage of canine orthotopic liver transplantation attenuates portal and caval blood stasis and minimize hipoperfusion and metabolic acidosis observed with occlusion of portal and caval veins. During two hours, six dogs submitted to portal-jugular and caval-jugular passive shunts, with maintenance of arterial hepatic flow, were evaluated for pH, carbon dioxide tension (PCO2), base deficit (BD) and oxygen tension (PO2) in portal, caval and systemic arterial blood, as well as for increments of BD (DBD) in portal and caval blood. With a confidence level of 95 percent, the results showed that: 1. There were not changes of pH anDBD in portal and systemic arterial blood in the majority of studied times; 2. There was metabolic acidosis in caval blood; 3. The negative increments of BD (DBD) were higher in caval blood than in splancnic venous blood at T10, T30 and T105; and, 4. Deoxigenation of portal and caval blood were detected. Acid-base metabolism and oxigenation monitoring of subdiaphramatic venous blood can constitute an effective way to evaluate experimental passive portal-jugular and caval-jugular bypass in dogs.
Texto completo